Dedicated Experiment to Explore Gravitational Effects on CP Violation

Anthony Palladino

2 October 2020

The physics / basic idea of the LOI

- We aim to measure CP-violation in the Kaon system in a low-gravity environment (in low Earth orbit or on the Moon) in order to:
 - Explore a possible link between CP violation and gravity, as suggested by:
 - G. Chardin, CP violation and antigravity (revisited), Nucl. Phys. A 558 (1993)
 - M.L. Good, K_2^0 and the Equivalence Principle, Phys. Rev. 121 (1961)
 - Understand possible sources of CP violation in the neutral Kaon system beyond the standard model
 - Probe gravitational interactions of antimatter
- Physics reach / outcome
 - First measurement of a gravitational effect at the quantum scale
 - Exclude or confirm cosmological implications;
 - Are there gravitational systematics that we should consider for other experiments on the Earth?
- Does your LOI cross frontiers (energy, neutrinos, cosmic, computing, ...)?
 - Yes. 'Cosmic' and 'Precision' frontiers, experimentally linking GR and QM and setting limits on many theories of cosmic phenomena

What is required for the LOI to succeed

- What are the common data sets, joint efforts, and/or benchmarks that you need to accomplish your plans?
 - In principle, the AMS-01/AMS-02 detector may be able to distinguish between $K_L \to 2\pi$ and $K_L \to 3\pi$, however it was not designed to do so
 - We extend an invitation to AMS-02 collaborators to join our collaboration to help perform simulation studies
 - Benchmarks:
 - Design an improvement/upgrade for AMS-02, or
 - Design a new dedicated detector for placement on the ISS (and/or the Moon)
 - Run high-statistics simulation studies to understand systematics
- Does your LOI require new detector technologies, instrumentation, facilities, computing, etc. to succeed
 - No new technologies are required
 Particle physics detectors operating in space: AMS, PAMELA
 - May need to design new instrumentation (as above)

What do you plan to do during Snowmass

- Plans for participation / studies / simulation / contributed papers in the Snowmass process
 - Participation:
 - Attend all 'Rare Processes and Precision Frontier' working group meetings
 - We hope to enlarge the participation in our collaboration
 - Studies:
 - Design detector / upgrade
 - Understand systematics (via simulations)
 - Contributed papers:
 - We already published one paper on the topic and performed some initial simulations (see final slide for citations)
 - Two papers (detector design/upgrade and systematics studies)
 - A portion of PhD Dissertation
- Schedule for these goals
 - Dec 2020 / Jan 2021: Submit first paper
 - Spring 2021: Submit second paper
 - Multiple conferences

What do you hope to get out of Snowmass

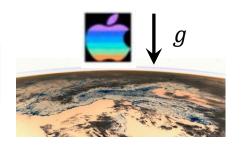
- Gain interest from the physics community
- Grow our collaboration
- Further theoretical work to help understand the cosmological implications of a gravitational dependence of CP-violation
- Increase likelihood of obtaining funding for this experiment

Additional slides

Background

Matter is self-attractive

$$\frac{d^2x^{\lambda}}{d\tau^2} = -\frac{dx^{\mu}}{d\tau}\frac{dx^{\nu}}{d\tau}\Gamma^{\lambda}_{\mu\nu}$$


Antimatter is self-attractive

$$CPT: dx^{\mu} \to -dx^{\mu}$$

$$CPT: \Gamma^{\lambda}_{\mu\nu} \to -\Gamma^{\lambda}_{\mu\nu}$$

$$CPT: dx^{\mu} \to -dx^{\mu}$$

$$CPT: \Gamma^{\lambda}_{\mu\nu} \to -\Gamma^{\lambda}_{\mu\nu}$$

$$-\frac{d^{2}x^{\lambda}}{d\tau^{2}} = -\left(-\frac{dx^{\mu}}{d\tau}\right)\left(-\frac{dx^{\nu}}{d\tau}\right)\left(-\Gamma^{\lambda}_{\mu\nu}\right)$$

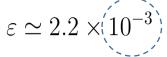
- Is there a mutual repulsion between matter and antimatter?
 - No experimental conclusion yet
 - GR predicts a repulsion when CPT is applied [M. Villata, 2011]

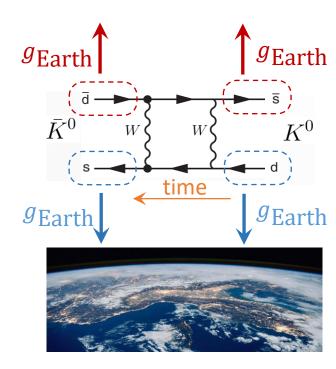
$$-\frac{d^2x^{\lambda}}{d\tau^2} = -\left(-\frac{dx^{\mu}}{d\tau}\right)\left(-\frac{dx^{\nu}}{d\tau}\right)\Gamma^{\lambda}_{\mu\nu}$$

Motivation for a CP-violation Experiment

 A gravitationally-induced separation of the matter and antimatter components of the neutral kaon would be proportional to the mixing time

Neutral Kaon Mixing Time
$$\Delta \tau = \frac{\pi \hbar}{\Delta m_K c^2} \simeq 5.9 \times 10^{-10} \; \mathrm{s}$$


Induced Separation
$$\Delta \xi \sim g t^2$$


- This separation would cause a regeneration of the K_s component
- The amount of CP violation induced by this phenomenon would be:

$$\chi \sim \frac{\Delta \xi}{L_{Compton}} \sim O(1) \times g \frac{\hbar \ m_K c}{(\Delta m_K c^2)^2}$$

$$\chi \sim O(1) \times 0.88 \times (10^{-3})$$

 This is the same order of magnitude as the observed level of CP violation on the surface of Earth:

Motivation for a CP-violation Experiment

How can we test this hypothesis?

Measure R in a low-gravity environment!

$$R = \frac{\Gamma(K_L \to \pi^+ \pi^-)}{\Gamma(K_L \to \pi^+ \pi^- \pi^0)} \propto \varepsilon^2 \quad \text{if} \quad \varepsilon \propto g \quad \longrightarrow \quad R \propto g^2$$

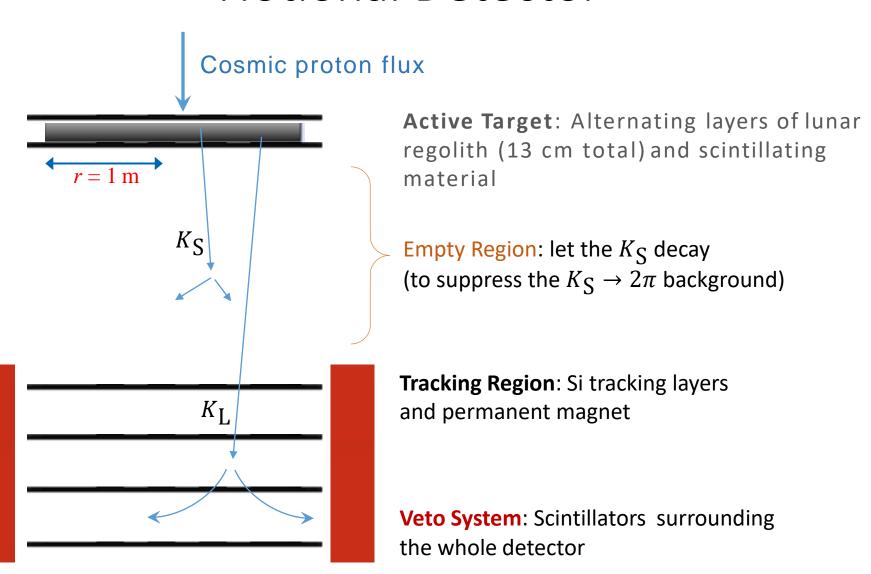
Low Earth Orbit (e.g., aboard the International Space Station, like AMS-02)

$$g_{LEO} \simeq 90\% g_{\bigoplus} \longrightarrow \Delta R_{LEO} \simeq -20\% R_{\bigoplus}$$

On the surface of the Moon

$$g_{Moon} \simeq 16\% g_{\bigoplus} \longrightarrow \Delta R_{Moon} \simeq -97\% R_{\bigoplus}$$

Table 1: Requirements for 3σ and 5σ measurements of R in low gravity environments assuming either a linear dependence of ε on g, or assuming ε is independent of g.


1				
Measurement	$N(K_L \text{ decays})$		T_{\min} to collect sufficient K _L decays	
	3σ	5σ	3σ	5σ
<i>R</i> on Surface of the Moon, if $\varepsilon \propto g$	3.3×10^{5}	9.1×10^{5}	158 days	439 days
<i>R</i> in Low Earth Orbit, if $\varepsilon \propto g$	1.1×10^{4}	3.1×10^4	6 days	15 days
R in either LEO or on the Moon, if ε is independent of g	9.0×10^{3}	2.5×10^4	5 days	12 days

- With only < 1-month of data collection we will either:
 - Produce a 5σ result showing CP violation is independent of gravity, or
 - Show conclusive evidence of a gravitational effect at quantum scale Rare Precision Frontier Townhall RF03 Parallel Session, 10/02/2020

Comparison to other experiments

- Other experiments measuring the direction of gravitational pull(or push) on antimatter
 - First attempt 1967 [free fall of electrons and positrons: F. C. Witteborn & W. M. Fairbank, "Experimental Comparison of the Gravitational Force on Freely Falling Electrons and Metallic Electrons," Phys. Rev. Lett. 19,1049 (1967)]
 - Second attempt 1986 [Los Alamos-led team proposed to measure gravitational force on antiprotons at the CERN Low Energy Antiproton Ring (LEAR) with a similar experiment to that of Fairbank]
 - T. Phillips's Interferometric experiment proposal at FERMILAB (1997) T. Phillips, Hyp. Int. 109 (1997) 357 [Never started]
 - CERN: AEGIS, ALPHA-g, GBAR [all involve antihydrogen; all ongoing now]
 - PSI: MAGE experiment with Muonium at PSI, First with leptons; low binding energy. First proposal (D. Kaplan & K. Kirsch): arXiv:physics/0702143v1 [physics.atom-ph]
- Our approach has low systematics for phenomenon of interest:
 - Not sensitive to binding energy
 - No need to create anti-atoms
 - No need to confine or transport anti-atoms
 - No new technology (standard particle physics detectors will suffice)
- Our main difficulty is placing/operating the detector in space

Notional Detector

Questions?

- G.M. Piacentino, A. Palladino, G. Venanzoni. *Measuring gravitational effects on antimatter in space*. Physics of the Dark Universe 13, 162-165 (2016). DOI: 10.1051/,01023 (2017) 7142010. 142. arXiv: 1605.01751 [hep-ph]
- G. M. Piacentino, A. Gioiosa, A. Palladino, G. Venanzoni. *Measuring gravitational effects on antimatter in space*. International Symposium Advances in Dark Matter and Particle Physics (ADMPP16), Messina, Italy, October 24-27, 2016. European Physical Journal Conferences. 142 (2017) 01023 DOI: 10.1051/epjconf/201714201023
- G. M. Piacentino, A. Gioiosa, A. Palladino, V. Testa, G. Venanzoni. *Probing antigravitational effects through CP violation on the Moon*. (Jul 16, 2019)

 arXiv: 1907.06866 [astro-ph.HE]

Letter of Interest for Snowmass 2021: Dedicated Experiment Exploring Gravitational Effects on CP Violation

G. M. Piacentino*^{1,2,3}, A. Palladino ^{†4}, R. N. Pilato^{5,6}, G. Venanzoni⁶, L. Conti^{2,7}, G. Di Sciascio², R. Di Stefano⁸, N. Fratianni^{1,2}, A. Gioiosa⁶, D. Hajdukovic⁹, F. Ignatov¹⁰, F. Marignetti⁸, F. Mercaldo^{1,3}, S. Miozzi², A. Santone^{1,3}, and V. Testa³

¹Università degli Studi del Molise, Campobasso, Italy; ²INFN, Sezione di Roma Tor Vergata, Rome, Italy; ³INAF, Osservatorio Astronomico di Roma, Monteporzio Catone, Italy; ⁴Boston University, Boston, USA; ⁵Dipartimento di Fisica, Università di Pisa, Pisa, Italy; ⁶INFN, Sezione di Pisa, Pisa, Italy; ⁷Uninettuno University, Rome, Italy; ⁸INFN, Sezione di Napoli, Naples, Italy; ⁹INFI, Cetinje, Montenegro; ¹⁰BINP, Novosibirsk, Russia.

Physics of the Dark Universe Volume 13, September 2016, Pages 162-165

Measuring gravitational effects on antimatter in space

G.M. Piacentino a, b, c ⊠. A. Palladino d, c ≥ ⊠. G. Venanzoni d ⊠

- ^a Università degli Studi del Molise, Campobasso, Italy
- b INFN, Sezione di Lecce, Lecce, Italy
- c INAF, Sezione di Milano, Milano, Italy
- d Laboratori Nazionali di Frascati dell'INFN, Frascati, Italy
- e Boston University, Boston, USA

Received 7 November 2015, Revised 4 July 2016, Accepted 5 July 2016, Available online 9 July 2016.